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Abstract. In this paper we extend the calculation of the QED corrections to deep inelastic lepton-proton
scattering with a tagged photon, taking into account the full corrections on the lepton side. Comparing
to previous results that were obtained by considering only large logarithmic terms at leading and next-to-
leading accuray, we find that the difference is in general quite small, however, it may be significant in the
region of large y and small x.

1 Introduction

One of the major aims of the experiments at the HERA ep
collider is the measurement of the structure functions of
the proton, F2(x,Q2) and FL(x,Q2), over a broad range
of the kinematic variables. Especially the domain of small
Bjorken x < 10−4 and momentum transfer Q2 of the or-
der of a few GeV2 and below is of particular interest, as
it provides a challenge for attempts towards a complete,
quantitative understanding of the dynamics of quarks and
gluons inside the nucleon.

Of these structure functions, the longitudinal one, FL,
is much more difficult to access. There exist several ways
to separately extract F2 and FL from the experimental
data. The most obvious, direct method requires to run the
collider at different (i.e., lower) center-of-mass energies,
which may not be desirable from the point of view of other
parts of the physics program.

Indirect methods usually require substantial input
from theory and depend more or less on modeling the
hadronic final state, like extrapolations or QCD fits (see
e.g., [1–4]), or the measurement of the azimuthal angle dis-
tribution of final state hadrons, as suggested by Gehrmann
[5]. However, these methods can be used at fixed collision
energy.

Another direct method was suggested by Krasny et
al. [6] and utilizes radiative events with an exclusive hard
photon registered in the forward photon detector (PD).
Such a device is actually part of the luminosity monitoring
system of the H1 and ZEUS experiments, and will continue
to exist after the HERA luminosity upgrade. The idea of
this method is that emission of photons in a direction close
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to the incoming electron corresponds to a reduction in the
effective beam energy. The effective electron energy for
each radiative event is determined from the energy of the
hard photon observed (tagged) in the PD.

Besides measuring FL, radiative events extend the ac-
cessible kinematic range to lower values of Q2. The po-
tential of this method is supported by preliminary results
from the H1 collaboration of an analysis at low Q2 for F2
[7–10] (for earlier analyses that did not take into account
QED radiative corrections see [11,12]). The feasibility of
the corresponding determination of FL was studied in [13].
However, with currently analyzed data sets it is not yet
possible to compete with FL from extrapolations or QCD
fits [8].

A precise analysis of experimental data requires the in-
clusion of radiative corrections. The most important ones
are the QED corrections on the lepton side that have been
discussed at the leading logarithmic level [14,15] and tak-
ing into account next-to-leading logarithms [16–18]. As the
difference between leading and next-to-leading logarith-
mic terms could be quite significant, reaching of the order
of 5 percent in some regions, it appears difficult to es-
timate the remaining uncertainty due to non-logarithmic
terms. It is the purpose of the present work to close this
particular gap.

We may focus on the QED corrections on the lep-
ton side since they form a gauge invariant subset of the
full corrections to the process under consideration. Fur-
thermore, one expects that the QED corrections on the
hadronic side are significantly smaller, as the typical
hadronic mass scale of the order of the proton mass is
much larger than the electron mass, so there is no com-
parably large logarithm. In fact, emission of photons off
quarks can essentially be absorbed into suitably defined
parton distribution functions, and the net effect turns out
to be numerically negligible [19].
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The outline of the present paper is as follows. After
introducing our notation in Sect. 2, we devote Sect. 3 to a
discussion of the individual contributions to the leptonic
corrections with forward photon tagging, and apply these
corrections in Sect. 4 to the case of radiative deep inelas-
tic scattering. In Sect. 5 we present some numerical results
and our conclusions. The appendices collect several formu-
lae that are useful for a numerical implementation of our
calculation.

2 Born cross section

A a starting point, let us introduce our notation in the
context of the lowest order contribution to the radiative,
semi-inclusive deep inelastic scattering process

e(p) + p(P ) → e(p′) + γ(k) +X(P ′) , (1)

where the photon γ is assumed to be measured in the
photon detector.

We choose invariant kinematic variables that use the
measured, scattered electron and take into account the
energy loss due to photon emission [6],

Q̂2 = −(p− p′ − k)2 ,

x̂ =
Q̂2

2P · (p− p′ − k) ,

ŷ =
P · (p− p′ − k)
P · (p− k) . (2)

For HERA conditions, the polar angle ϑγ of the tagged
photon (as measured with respect to the incident electron
beam) will be very small, ϑγ ≤ ϑ0, with ϑ0 being about
0.45 mrad in the case of the PD of H1. We shall also
assume below that the scattering angle of the electron,
θ, is always much larger than ϑ0. Therefore, the energy
fraction of the electron after initial state radiation reads

z =
2P · (p− k)

S
=
Ee − Eγ

Ee
=
Q̂2

x̂ŷS
, (3)

where Ee is the electron beam energy, Eγ represents the
energy deposited in the forward PD, and S = 2P · p.

The relation between the shifted variables (2) and the
standard Bjorken variables of deep inelastic scattering
reads:

Q2 =
Q̂2

z
, x =

x̂ŷ

1 − z(1 − ŷ) , y = 1 − z(1 − ŷ) .
(4)

The Born cross section, integrated over the solid angle
of the photon detector (0 ≤ ϑγ ≤ ϑ0, m/Ee � ϑ0 � 1)
takes a factorized form,

1
ŷ

d3σBorn
dx̂dŷ dz

=
α

2π
P (z, L0) Σ̃(x̂, ŷ, Q̂2) , (5)

with

Σ̃(x̂, ŷ, Q̂2) =
2πα2(−Q̂2)
Q̂2x̂ŷ2

[
2(1 − ŷ) − 2x̂2ŷ2

M2

Q̂2

+
(
1 + 4x̂2

M2

Q̂2

)
ŷ2

1 +R

]
F2(x̂, Q̂2) , (6)

and

P (z, L0) =
1 + z2

1 − z L0 − 2z
1 − z , L0 = ln

(
E2

eϑ
2
0

m2

)
,

α(−Q̂2) =
α

1 −Π(−Q̂2)
, (7)

R = R(x̂, Q̂2) =
(
1 + 4x̂2

M2

Q̂2

)
F2(x̂, Q̂2)

2x̂F1(x̂, Q̂2)
− 1 .

The obvious advantage of the use of shifted variables
(2) is their direct appearance in the argument of the struc-
ture functions in the Born cross section.

3 Leptonic corrections

In the expression for the lowest order cross section, (5),
we encountered the logarithm L0 =: ln ζ0 of the quantity

ζ0 =
E2

eϑ
2
0

m2 . (8)

Although ϑ0 � 1, we have ζ0 � 1 and L0 ≈ 6.5 � 1
for the conditions of the HERA PD’s. We shall therefore
consistently neglect contributions that are of order O(ϑ0)
or O(ζ−1

0 ).
As explained in the introduction, the subset of leptonic

QED corrections is gauge invariant, and it also factorizes,
thus allowing a discussion isolated from the hadronic part.
Besides keeping things more transparent, this also facili-
tates reusing the results in other calculations.

In the present section, we shall therefore consider the
Compton subprocess

e(p1) + γ∗(−q) → e(p2) + γ(k) , (9)

with the emission angle of the photon being integrated
over the PD, while taking into account the corrections
from virtual and real QED corrections. While performing
this integration, we require that the remaining part of the
amplitude for the full process (i.e., γ∗ + p→ X) depends
only weakly on the small transverse momentum of the
forward photon.

3.1 Compton tensor

Let Mµ be the matrix element of the Compton scattering
process (9), with the index µ describing the polarization
state of the virtual photon. Adopting the notation of [20],
we define the Compton tensor

Kµν =
1

(2e2)2
∑
spins

Meγ∗→e′γ
µ (Meγ∗→e′γ

ν )∗ . (10)
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Using current conservation, this tensor is conveniently
decomposed as follows:

Kµν =
1
2
(
Pµν + P ∗

νµ

)
, (11)

Pµν = g̃µν

(
Bg +

α

2π
Tg

)
+
∑

i,j=1,2

p̃iµp̃jν

(
Bij +

α

2π
Tij

)
,

g̃µν = gµν − qµqν
q2

, p̃iµ = piµ − qµ pi · q
q2

, i = 1, 2 .

The expressions for the quantities Bij corresponding
to the Born approximation are:

Bg =
1
ŝt̂

[
(ŝ+ û)2 + (t̂+ û)2

]− 2m2q2
(

1
ŝ2

+
1
t̂2

)
,

B11 =
4q2

ŝt̂
− 8m2

ŝ2
,

B22 =
4q2

ŝt̂
− 8m2

t̂2
, B12 = B21 = 0 ,

ŝ = 2p2 · k , t̂ = −2p1 · k ,
û = (p1 − p2)2 , ŝ+ t̂+ û = q2 . (12)

Note that for almost collinear emission, k 	 (1− z)p1,
we may neglect the transverse momentum of the emitted
photon in the tensor decomposition (11) and use momen-
tum conservation to set p̃2 = zp̃1.

The kinematic variables of the Compton subprocess
are related to those of the radiative DIS process via:

û = − Q̂
2

z
, q2 = (p1−k−p2)2 	 −Q̂2 , ŝ 	 1 − z

z
Q̂2 .

The quantities Tg, Tij in (11) denote the radiative cor-
rections to the Compton tensor.

3.2 Virtual and soft corrections

The virtual corrections to the Compton tensor, as calcu-
lated in [20], are conveniently decomposed into a piece
containing the universal infrared singular contributions,
which are proportional to the Born contributions, and an
infrared finite remainder:

Tg = ρBg + T ′
g , Tij = ρBij + T ′

ij , i, j = 1, 2 , (13)

where

ρ = 4 ln
λ

m
(LQ − 1) − L2Q + 3LQ + 3 ln z +

π2

3
− 9

2
,

LQ = ln
Q2

m2 . (14)

The parameter λ in the above expression is a fictitious
photon mass regulating the IR divergency.

Performing the integration over photon angles, we ob-
tain
E2

e

π

∫
dΩk Bµν =

(−Q2
l g̃µν + 4zp̃1µp̃1ν

)
× 1

1 − z
[(

1 +
α

2π
ρ
)
P (z, L0) − α

2π
T
]

+ O (ϑ20, ζ−1
0

)
, (15)

where

T = (A ln z +B)P (z, L0) + CL0 +D ,
A = 2LQ − L0 − 2 ln(1 − z) ,
B = ln2 z − 2Li2(1 − z) − 1

2
,

C = − 2z
1 − z ln z − z ,

D = −1 − 6z + 4z2

1 − z ( Li2(1 − z) + ln z ln(1 − z))

− 2z ln2(1 − z) + 8z
1 − z ln z − 4π2

3
z + 1 ,

Li2(x) = −
x∫
0

dy
y

ln(1 − y) .

The single and double logarithmic terms in L0 and LQ of
the above expression agree with [17]. Details of the calcu-
lation will be given elsewhere [21].

The dependence of the virtual corrections on the un-
physical parameter λ is canceled by the contribution from
emission of an additional soft photon, as usual. Requir-
ing that the energy fraction of the second (soft) photon in
units of the energy of the incoming electron does not ex-
ceed ε, with ε� 1, and adding the contribution from soft
photon emission to the virtual correction then amounts to
the replacement of the quantity ρ in (15) by ρ̃, see [20]:

ρ̃ = 2(LQ − 1) ln
ε2

Y
+ 3LQ + 3 ln z − ln2 Y − π

2

3
− 9

2

+2Li2

(
1 + c
2

)
, (16)

with

Y =
Ee

′

Ee
and c = cos θ = cos�(2p, 2p ′) (17)

being the relative energy of the scattered electron and the
cosine of the scattering angle in the lab system, respec-
tively.

3.3 Double hard bremsstrahlung

For the case of double photon emission, we define the ‘dou-
ble Compton tensor’ analogously to (10) as

Kγγ
µν =

1
2e6

∑
spins

Meγ∗→e′γγ
µ (Meγ∗→e′γγ

ν )∗ , (18)

where nowMeγ∗→e′γγ
µ is the matrix element of the double

Compton process process

e(p1) + γ∗(−q) → e(p2) + γ(k1) + γ(k2) , (19)

with the index µ describing the polarization of the virtual
photon.
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For the kinematic invariants of this subprocess we shall
use the notation:

zi = 2p1 · ki , z′
i = 2p2 · ki ,

σ = 2k1 · k2 = (k1 + k2)2 ,
∆ = −[(p1 − k1 − k2)2 −m2] = z1 + z2 − σ ,
∆′ = [(p2 + k1 + k2)2 −m2] = z′

1 + z
′
2 + σ ,

Q2
l = −(p1 − p2)2 = 2(p1 · p2 −m2) ,

Q2
h = −q2 = Q2

l + z1 + z2 − z′
1 − z′

2 − σ .

3.3.1 Double collinear emission

When both photons are emitted almost collinearly to the
incoming electron, (k1 	 x1p1, k2 	 x2p1), we may neglect
the transverse momenta of the photons with respect to the
incoming electron, and the double Compton tensor takes
a simple form:

K2−coll
µν = 4

[−g̃µνQ
2
l + 4z (p̃1µp̃1ν)

]
(20)

×
[
1 + z2

x1x2

1
z1z2

− z

∆2

(
z1
z2

+
z2
z1

)
+

1
x1x2

(
r31 + zr2
z1∆

+
r32 + zr1
z2∆

)
− 2
m2

∆

(
r21 + z

2

x2z21
+
r22 + z

2

x1z22
+

(1 − z)(r1r2 + z)
x1x2z1z2

)
− 4z

m2

∆2

(
1
z1

+
1
z2

)
+ 4z

m4

∆2

(
1
z1

+
1
z2

)2
]
.

Here r1 = 1 − x1, r2 = 1 − x2, and z = 1 − x1 − x2. This
expression is consistent with Merenkov [22], where leading
and next-to-leading logarithms were calculated.

Performing the integration over the photon angles and
over the relative photon energies, taking into account the
symmetry factor 1/2! for the emitted photons, one obtains:

e4

2!

∫
d̃k1 d̃k2 Θ(x1 − ε)Θ(x2 − ε) δ(x1 + x2 − (1 − z))

×K2−coll
µν =

[−g̃µνQ
2
l + 4z (p̃1µp̃1ν)

]
× α

2

8π2
[
P
(2)
log + P (2),IR−div.

nonlog + P (2),IR−fin.
nonlog

]
. (21)

The previously known leading terms containing double
and single logarithms L0 are contained in P (2)

log . The non-
leading terms are split into an infrared divergent piece that
depends on ln ε, and an infrared finite piece. An outline of
the calculation and expressions are given in appendix A.

It is worth to mention that the terms depending on the
soft-photon cutoff parameter ε in (21) do factor nicely, as
expected from the usual soft-photon factorization:

[−g̃µνQ
2
l + 4z (p̃1µp̃1ν)

]×( α
2π

)2
P (z, L0) ·2(L0−1) ln

1
ε
.

(22)

3.3.2 Final state collinear radiation

Consider now the kinematic region where one photon, say,
photon 1, is emitted almost collinearly to the incoming
electron, i.e., k1 	 x1p, and the other close to the outgoing
electron, so that k2 	 ξ(p2 + k2). The double Compton
tensor then simplifies to

KFSR
µν 	

[
−g̃µν

Q2
l

1 − ξ + 4(1 − x1) · (p̃1µp̃1ν)
]

×2
[
1 + (1 − x1)2

x1

1
z1

− 2(1 − x1)m
2

z21

]
×2
[
1 + (1 − ξ)2

ξ

1
z′
2

− 2
m2

z′
2
2

]
,

exhibiting the expected complete factorization of collinear
initial and final state radiation, respectively.

Integrating this expression over the emission angles of
photon 1, one obtains

E2

π

∫
dΩ1 K

FSR
µν =

[
−g̃µν

Q2
l

1 − ξ + 4(1 − x1) · (p̃1µp̃1ν)
]

× 2
x1
P (1 − x1, L0)

×2
[
1 + (1 − ξ)2

ξ

1
z′
2

− 2
m2

z′
2
2

]
.

Note that we have not yet integrated over the angles of
the final state photon. The treatment of final state radia-
tion depends on the experimental situation, i.e., whether
the detector is able to resolve a photon collinear to the
electron, or whether it just measures the sum of their en-
ergies.

3.3.3 Semi-collinear emission

The final case covers the kinematic range where one pho-
ton is emitted almost collinearly to the incoming electron,
while the other photon is emitted at an angle ϑ2 > ϑ0, but
not collinear to the final electron. We denote this kine-
matic domain as the semi-collinear one.

In order to be consistent with the above calculation of
the double collinear emission, we shall perform the angular
integration over the collinear photon and drop all contri-
butions of the order O(ϑ0) and O(ζ−1

0 ). We find indeed
factorization of initial state radiation for large emission
angles of the second photon, i.e., ϑ2 � ϑ0. However, in
the vicinity of the forward cone that is defined by the
solid angle of the PD, there are contributions from fur-
ther terms with a complicated z2-dependence that spoil a
naive factorization. These additional terms fall off rapidly
and essentially contribute only in the small region ϑ0 <
ϑ2 � 2ϑ0.

Assuming that photons in this narrow region outside
the PD will not be measured, we integrate these terms
over angles and split their contribution schematically as
follows:
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E4

π2

∫
ϑ1<ϑ0

dΩ1

∫
ϑ2>ϑ0

dΩ2 K
semi−coll
µν (23)

	 E2

π

∫
ϑ2>ϑ0

dΩ2

{[
−g̃µν (r1(Q

2
l + z2))

2 + (r1Q2
l − z′

2)
2

r1z2z′
2

+4r21 p̃
µ
1 p̃

ν
1
Q2

h

r1z2z′
2
+ 4p̃µ2 p̃

ν
2
Q2

h

r1z2z′
2

]
· 4
x1r1

P (r1, L0)

}

+
[−g̃µνQ

2
l + 4(r1 − x2) (p̃1µp̃1ν)

] · 4
x1x2

H(x1, x2) ,

with r1 = 1− x1. The explicit expression for the function
H(x1, x2), which collects the mentioned non-factorizing,
quasi-collinear terms, is given in appendix B. It is infrared-
finite and does not contain any logarithm of a large scale.

The integrand in the first part on the r.h.s. of (23) can
be rewritten as{

. . .

}
	 1
x1
P (r1, L0) · 4

r1
BBorn

µν (r1p1, p2) , (24)

where for the sake of consistency one should drop terms of
order m2 on the r.h.s. For a discussion and further details
see [21].

Since in our decomposition of phase space only photon
1 reaches the PD, we have to identify r1 by z and x1 by
1 − z in the above expressions. However, we still need to
integrate over the phase space of the other photon that
is emitted at large angles. This calculation depends on
the complete scattering process and in general requires a
numerical integration.

4 Radiative DIS

Let us now turn to the description of the radiative scat-
tering process

e(p) + p(P ) → e(p′) +X(P ′) + γ(k1) ( + γ(k2)) .

As argued in the introduction, the leading raditiative cor-
rections to the process stem from emission of photons off
the lepton line1. It is now straightforward to contract the
radiatively corrected Compton tensor of the previous sec-
tion with the hadron tensor

Hµν(P, qh) = 4π

(
− g̃µνF1(xh, Q

2
h)

+P̃µP̃ν
1

P · qh F2(xh, Q
2
h)

)

= 4π

(
− g̃µνF1(xh, Q

2
h)

1 Another gauge invariant set of large corrections is due to
the running of the QED coupling α. Note that we have already
included it in the expression for the Born cross section, so we
won’t discuss it further

+P̃µP̃ν
2xh

Q2
h

F2(xh, Q
2
h)

)
,

P̃ν = Pν − qhν
P · qh
q2h

, xh =
Q2

h

2P · qh ,

Q2
h = −q2h .

Here qh denotes the four-momentum transfer to the
hadronic system. Taking into account the emission of two
photons, qh = p1 − p2 − k1 − k2.

Applying the results from the previous section, we find
for the contribution from virtual and soft corrections to
the cross section:

1
ŷ

d3σV+S
dx̂dŷ dz

=
α2

4π2
[P (z, L0)ρ̃− T ] Σ̃(x̂, ŷ, Q̂2) , (25)

where ρ̃ is taken from (16) with

Y =
Ee

′

Ee
= z(1 − ŷ) + x̂ŷ Ep

Ee
,

c = cos θ =
z(1 − ŷ)Ee − x̂ŷEp

z(1 − ŷ)Ee + x̂ŷEp
. (26)

In the calculation of the contributions from the emis-
sion of two hard photons, we decompose the phase space
into three regions discussed in the previous section (see
also [17]): i) both hard photons hit the forward photon de-
tector, i.e., both are emitted within a narrow cone around
the electron beam (ϑ1,2 ≤ ϑ0, ϑ0 � 1); ii) one photon is
tagged in the PD, while the other is collinear to the out-
going electron (ϑ′

2 ≡ �(2k2, 2p ′) ≤ ϑ′
0); and finally iii) the

second photon is emitted at large angles (i.e., outside the
defined narrow cones) with respect to both incoming and
outgoing electron momenta. For the sake of simplicity, we
assume that m/Ee � ϑ′

0 � 1.
The contribution from the kinematic region i), with

both hard photons being tagged in the PD, but only the
sum of their energies measured, reads:

1
ŷ

d3σγγ
i

dx̂dŷ dz
=
α2

8π2
[
P
(2)
log + P (2),IR−div.

nonlog + P (2),IR−fin.
nonlog

]
Σ̃ ,

(27)
see (21).

In region ii) we need to distinguish between the cases
of whether a photon emitted close to the outgoing elec-
tron can be detected separately (exclusively), or whether
its energy and momentum are measured together with
the electron (inclusively), as this affects the reconstructed
kinematic variables.

For the exclusive event selection, when only the scat-
tered electron is detected, we obtain

1
ŷ

d3σγγ
ii,excl

dx̂dŷ dz
=
α2

4π2
P (z, L0)

ζmax∫
ζmin

dζ
ζ2

×
[
1 + ζ2

1 − ζ
(
L̃− 1

)
+ 1 − ζ

]
Σ̃f , (28)
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where L̃ = ln(Ee
′ 2ϑ′

0
2/m2) = ln

(
E2

eϑ
′
0
2/m2

)
+ 2 lnY ,

and Σ̃f = Σ̃(xf , yf , Q
2
f ) is an implicit function of ζ via

the relation between the “internal” kinematic variables
xf , yf , Q

2
f and the “external” ones x̂, ŷ, Q̂2 (see [16–18] for

more details). The integration limits explicitly depend on
the method for the determination of kinematic variables.

In the case of a calorimetric event selection, where
only the sum of the energies of the outgoing electron and
collinear photon is measured and taken into account in the
determination of the kinematic variables, the correspond-
ing contribution reads

1
ŷ

d3σγγ
ii,cal

dx̂dŷ dz
=
α2

4π2
P (z, L0)

ζmax∫
0

dζ (29)

×
[
1 + ζ2

1 − ζ
(
L̃− 1 + 2 ln ζ

)
+ 1 − ζ

]
Σ̃ ,

see also [16–18].
For the contribution from the semi-collinear region iii)

we apply the results from section 3.3.3 to obtain:

1
ŷ

d3σγγ
iii

dx̂dŷ dz
=
α2

π2
P (z, L0)

∫
d3k2
|2k2|

α2(Q2
h)

Q4
h

Iγ(zp, p′, k2)

+
α2

4π2

xt
2∫

ε

dx2
z

z − x2 H(1 − z, x2)

×Σ̃(xt, yt, Q
2
t ) , (30)

where the ‘radiation kernel’ Iγ and the boundaries of in-
tegration for the logarithmic part are given in [17]. For
the second, quasi-collinear contribution, we have used the
abbreviations

xt =
(z − x2)x̂ŷ
zŷ − x2 , yt =

zŷ − x2
z − x2 , Q2

t = Q̂2 z − x2
z

,

(31)
and the upper limit of integration is

xt
2 = zŷ . (32)

The total contribution from QED radiative corrections
is finally obtained by adding up (25), (27), (30), and, de-
pending on the chosen event selection, (28) or (29). One
easily verifies that the unphysical IR regularization pa-
rameter ε cancels in the sum.

5 Results and discussion

In this section we shall present numerical results obtained
from the above expressions and compare to next-to-
leading radiative corrections [17]. As input we used

Ee = 27.5 GeV , Ep = 820 GeV , ϑ0 = 0.5 mrad .
(33)

We chose the ALLM97 parameterization [23] as structure
function with R = 0, no cuts were applied to the phase
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ŷ
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Fig. 1. Radiative corrections δRC (34) with full leptonic O(α)
vs. next-to-leading logarithmic accuracy at x̂ = 10−4 and
x̂ = 0.1 and a tagged photon energy of 20 GeV. No cuts have
been applied to the phase space of the second (semi-collinear)
photon

space of the second photon, and we assumed a calorimetric
event selection. Furthermore, we took a fixed representa-
tive angular resolution of ϑ′

0 = 50mrad.
Figure 1 compares the radiative correction

δRC =
d3σ

d3σBorn
− 1 , (34)

calculated with next-to-leading logarithmic and full O(α)
accuracy for the electron method at x̂ = 10−4 and x̂ = 0.1
and for a tagged energy of EPD = 20 GeV. Similar to
the well-known QED corrections to DIS (see e.g., [24] and
references cited therein), the corrections are large and pos-
itive for large ŷ, while they may become large and negative
for ŷ → 0 at large x̂.

Furthermore, one sees that the difference between the
full result and the one at next-to-leading logarithmic accu-
racy [17] is very small; it is typically at the permille level
except for large ŷ, where the phase space for the ‘lost pho-
ton’ gets large, see (32), and for small x̂. In this case it
easily reaches values of the order of a percent. This may
be important in view of the increased statistics expected
at the upgraded HERA collider.

Looking at the individual contributions beyond the
next-to-leading logarithmic approximation, one finds a
significant cancellation between terms from virtual+soft
corrections and from double collinear emission. Their sum
is typically of the order permille, and it depends only on
z, c.f. (25) and (27). Therefore the total difference can be
mainly attributed to the contribution of photons emitted
into a small region outside but close to the PD.

To summarize, we have calculated the full leptonic
QED corrections to DIS with tagged initial state radia-
tion. We find that the corrections beyond next-to-leading
logarithmic accuracy are typically very small, but can still
be significant, i.e., of the order of a percent, in the inter-
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esting region of small x, where the use of radiative events
appears most promising.

Appendix
A Integrals for double collinear emission

The calculation of the contribution from double collinear
emission assumes that only the sum of the photon ener-
gies, (1 − z)E, will be measured in the forward photon
detector.

We split the integration of expression (21) over the
restricted two-photon phase space in the following way:∫

d̃k1 d̃k2 Θ(ϑ0 − ϑ1)Θ(ϑ0 − ϑ2)

δ ((1 − z) − (x1 + x2))
[
. . .
]

=
1

(4π)4

∫
x1 dx1

∫
x2 dx2

×δ ((1 − z) − (x1 + x2))
[
. . .
]
. (35)

In the last line we adopted the notation of Arbuzov et al.
[25],[
. . .
]
:=
E4

π2

∫
dΩ1 dΩ2 Θ(ϑ0 − ϑ1)Θ(ϑ0 − ϑ2)

[
. . .
]
,

(36)
for the angular part of the integrals.

A.1 Integrals over photon angles

We shall now provide the relevant angular integrals needed
for the contribution of two photons emitted almost
collinearly to the incoming electron. The calculation is
performed under the assumption that E2ϑ20/m

2 � 1 and
ϑ20 � 1. For details we refer the reader to [21].

Using the abbreviation

L0 = ln
E2ϑ20
m2 ,

we obtain:[
1
z1z2

]
=

1
x1x2

L20 ,[
m2

z21∆

]
=

1
x21x2r1

[
L0 + ln

x2r1
1 − z

]
− z

x1x22r1
ln
r1(1 − z)
x1z

,[
1
z1∆

]
=

1
x1x2r1

[
1
2
L20 + L0 ln

x2r
2
1

x1z
+ Li2

(
− x2
x1z

)

+Ξ
(
cosψ;

x1r2
x2r1

)]
,

[
z2
z1∆2

]
=

1
x1x2r21

{
1
2
L20 + L0

[
ln
x2r

2
1

x1z
− 1 +

x1x2
z

]
+Li2

(
− x2
x1z

)
+Ξ

(
cosψ;

x1r2
x2r1

)
+
r1r2 − 2z

z
ln(2x2) +

r1(r2 − 2z)
z

ln
x1

1 − z
+
r1(3r2 − 4z)

2z
ln z − r1r2 + 4x1z

2z
ln r1

−r1r2
2z

ln r2

+
4z − r1r2

2z
ln (η + x2r1 + x1r2 cosψ)

−r1r2
2z

ln (η + x1r2 + x2r1 cosψ)

}
, (37)

where z = 1 − x1 − x2, r1,2 = 1 − x1,2, and

cosψ = 1 − 2x1x2
r1r2

,

η =
√
(x1 + x2)(x1 + x2 − 4x1x2) ,

Ξ(t;x) =
1
2
ln2
(√

1 + 2tx+ x2 + tx+ 1
2

)

+ Li2

(
(1 + t)x√

1 + 2tx+ x2 + tx+ 1

)
+ Li2

(
− (1 − t)x√

1 + 2tx+ x2 + tx+ 1

)
. (38)

The integrals that contribute only non-enhanced terms
(i.e., no L0’s) are:[

m2

z1z2∆

]
=

1
x21x

2
2

[
(1 − z) ln(1 − z) + z ln z − r1 ln r1

−r2 ln r2 − x1 lnx1 − x2 lnx2
]
,

[
m2

z1∆2

]
=

1
x1x22

ln
r1(1 − z)
x1z

,[
m4

z21∆
2

]
=

1
x21x

2
2

[
1 − x1y

x2
ln
r1(1 − y)
x1y

]
,[

m4

z1z2∆2

]
=

1
6x31x

3
2

[
x21(3 − 2x1) ln

(1 − z)r1
x1z

+x22(3 − 2x2) ln
(1 − z)r2
x2z

+ ln
z

r1r2
− 2x1x2

]
. (39)

The remaining integrals can be obtained from those given
above by exchanging photons 1 and 2, i.e., x1 ↔ x2 and
r1 ↔ r2.

It should be noted that the coefficients of the double
and single logarithmic terms (L20 and L0) agree with [22,
25].
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A.2 Integrals over relative photon energy

Having performed the angular integration, we still need to
integrate over the relativ photon energy, see (35). As this
integral will be infrared-divergent, we introduce a soft-
photon cutoff ε on the minimum energy fraction of each
photon, which is identical to the one used in the soft-
photon contribution. We thus define:

〈[
· · ·
]〉

:=

1∫
ε

x1 dx1

1∫
ε

x2 dx2

×δ ((1 − z) − (x1 + x2))
[
· · ·
]

(40)

With the substitution x1 → (1 − z) · u and the abbre-
viation ε̃ = ε/(1 − z), we have, after elimination of the
trivial δ-function:

〈[
· · ·
]〉

= (1 − z)
1−ε̃∫
ε̃

du x1 x2

×
[
· · ·
]

x1=(1−z)u,x2=(1−z)(1−u),...

For the logarithmically (L0) enhanced leading terms,
we find the familar result:

P
(2)
log =

[
−4

1 + z2

1 − z ln ε̃+ (1 + z) ln z − 2(1 − z)
]
L20

+
[
6(1 − z) + 3 + z2

1 − z ln2 z + 4
(1 + z)2

1 − z ln ε̃
]
L0

=
[
P
(2)
Θ (z) + 2

1 + z2

1 − z
(
ln z − 3

2
− 2 ln ε

)]
L20

+
[
6(1 − z) + 3 + z2

1 − z ln2 z

+4
(1 + z)2

1 − z ln
ε

1 − z
]
L0 ,

with the leading-log radiator

P
(2)
Θ (z) = 2

[
1 + z2

1 − z
(
2 ln(1 − z) − ln z +

3
2

)
+
1
2
(1 + z) ln z − 1 + z

]
.

The analytical calculation of the remaining, non-
enhanced terms is quite tedious, leading to lengthy ex-
pressions involving many dilogarithms and trilogarithms
(see e.g., [26]).

As these terms also contain IR-divergent contributions,
we shall pursue here the following approach. We analyti-
cally extract those terms in the integrand that either con-
tribute to the infrared-divergence as ε → 0 or survive in
the limit z → 1, before performing the integral over the
remaining expression numerically. Besides, this separation
improves the stability of the numerical integration.
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Fig. 2. The infrared-finite, ‘normalized’ part of the double-
collinear contribution, P rem

nonlog(z)

For the IR-divergent pieces of the non-enhanced terms
we find

P IR−div
nonlog =

〈
4z

(x1x2)2

〉

=
4z

1 − z

1−ε̃∫
ε̃

du
1

u(1 − u) 	 8z
1 − z ln ε̃ . (41)

We then decompose the infrared-finite pieces as follows:

P
(2),IR−fin.
nonlog (z) = P z→1

nonlog + P
rem
nonlog(z) , (42)

so that P rem
nonlog(z = 1) = 0. The first term on the r.h.s.,

obtained in the limit z → 1 reads:

P z→1
nonlog =

〈
8

3x1x2

[
x1 + 3x2
x22

lnx1 +
3x1 + x2
x21

lnx2

− (1 − z)3
x21x

2
2

ln(1 − z) + 1 − z
x1x2

]〉

=

1−ε̃∫
ε̃

du
8
3

[
1

u(1 − u) +
3 − 2u
(1 − u)2 lnu

+
1 + 2u
u2

ln(1 − u)
]

= −16
9
(
3 + π2

)
, (43)

where we neglected terms of order ε.
Finally, we plot in Fig. 2 the ‘remainder’ P rem

nonlog(z),
which we evaluated numerically.

B Non-factorizing quasi-collinear piece

In the discussion of the contributions to the semi-collinear
piece, a non-factorizing part was split off in (23). The func-
tion H appearing there is given by

H(x1, x2) =
r31 + χr2
x1x2r1

H1 +
r32 + χr1
x1x2r2

H2

−χ
(
H3

r21
+
H4

r22

)
, (44)
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with

H1 = −Ξ
(
cosψ,

x1r2
x2r1

)
,

H2 =
1
2
ln2
x1r

2
2

x2χ
+
π2

6
+ Li2

(
−x1x2
χ

)
−Ξ

(
cosψ,

x2r1
x1r2

)
,

H3 = H1 +
2 cosψ
1 + cosψ

ln(2x2r1) − 1
1 + cosψ

ln
1 + cosψ

2

−1 + 2 cosψ
1 + cosψ

ln(η + x2r1 + x1r2 cosψ)

+
1

1 + cosψ
ln(η + x1r2 + x2r1 cosψ) ,

H4 = H2 +
2 cosψ
1 + cosψ

ln[(1 + cosψ)x2r1]

+
1

1 + cosψ
ln

1 + cosψ
2

+
1

1 + cosψ
ln(η + x2r1 + x1r2 cosψ)

−1 + 2 cosψ
1 + cosψ

ln(η + x1r2 + x2r1 cosψ) ,

χ = 1 − x1 − x2 , r1,2 = 1 − x1,2 .

The function Ξ and expressions η and cosψ are defined
in (38). For a derivation and details we refer the reader to
[21].
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